
1/16

Benne de Bakker April 22, 2019

28BYJ-48 Stepper Motor with ULN2003 Driver and
Arduino Tutorial

makerguides.com/28byj-48-stepper-motor-arduino-tutorial

This article includes everything you need to know about controlling a 28BYJ-48 stepper

motor with the ULN2003 driver board and Arduino. I have included datasheets, a wiring

diagram, and many example codes!

First we take a look at the easy to use Arduino Stepper library. This library is great

when you are just starting out, but doesn’t have many extra features.

I highly recommend to also take a look at the example codes for the AccelStepper

library at the end of this tutorial. This library is fairly easy to use and can greatly

improve the performance of your hardware.

After each example, I break down and explain how the code works, so you should have no

problems modifying it to suit your needs.

If you want to learn more about controlling larger stepper motors with more torque and

more speed, take a look at the articles below. In these articles I teach you how to control

NEMA 17 stepper motors, with drivers like the A4988.

Other stepper motor tutorials:

https://www.makerguides.com/28byj-48-stepper-motor-arduino-tutorial/
https://amzn.to/301s0WR

2/16

If you have any questions, please leave a comment below.

Supplies

Hardware components

28BYJ-48 stepper motor ×
1

Amazon

ULN2003 driver board ×
1

Amazon

Arduino Uno Rev3 ×
1

Amazon

Jumper wires (male to female) ×
10

Amazon
 AliExpress

Breadboard (optional, makes wiring easier) ×
1

Amazon

USB cable type A/B ×
1

Amazon

5V power supply (powering the stepper motor
directly from the Arduino can damage it!)

×
1

Amazon

Software

Arduino IDE

Makerguides.com is a participant in the Amazon Services LLC Associates Program, an

affiliate advertising program designed to provide a means for sites to earn advertising fees

by advertising and linking to products on Amazon.com.

Information about the 28BYJ-48 stepper motor and ULN2003 driver
board

The 28BYJ-48 is one of the cheapest stepper motors you can find. Although it is not super

accurate or powerful, it is a great motor to use for smaller projects or if you just want to

learn about stepper motors.

https://amzn.to/3a3BgA0
https://amzn.to/3a3BgA0
https://amzn.to/2QIbWbo
https://amzn.to/2QIbWbo
https://amzn.to/374aJjX
https://amzn.to/374aJjX
https://amzn.to/374aJjX
https://amzn.to/2EG9wDc
https://amzn.to/2EG9wDc
http://s.click.aliexpress.com/e/EgrBOhDW
https://amzn.to/2sZTxNA
https://amzn.to/2sZTxNA
https://amzn.to/34SBuXf
https://amzn.to/34SBuXf
https://amzn.to/39TUlVk
https://amzn.to/39TUlVk
https://www.arduino.cc/en/Main/Software
https://amzn.to/301s0WR

3/16

This motor is often used to automatically adjust the vanes of an air conditioner unit. It has

a built-in gearbox, which gives it some extra torque and reduces the speed drastically.

Below you can find the specifications for both the stepper motor and driver that are used

in this tutorial.

28BYJ-48 Stepper Motor Specifications

Rated voltage 5 V

Coil Resistance 50 Ohms

Coil Type Unipolar

Diameter – shaft 0.197″ (5.00 mm)

Length – shaft and bearing 0.394″ (10 mm)

Features Flatted shaft

Size/dimension Round – 1.100″ dia (28.00 mm)

Mounting hole spacing Flatted Shaft

Gear reduction 1/64 (see note)

Step angle Half step mode (recommended): 0.0879°
 Full step mode: 0.176°

Steps per revolution Half step mode: 4096 (see note)
 Full step mode: 2048

Termination style Wire leads with connector

Motor type Permanent Magnet Gear Motor

Number of phases 4

Cost Check price

For more information you can check out the datasheet here.

28BYJ-48 Datasheet

Important note: Manufacturers usually specify that the motors have a 64:1 gear

reduction. Some members of the Arduino Forums noticed that this wasn’t correct and so

they took some motors apart to check the actual gear ratio. They determined that the

exact gear ratio is in fact 63.68395:1, which results in approximately 4076 steps per full

revolution (in half step mode).

I am not sure if all manufacturers use the exact same gearbox, but you can just adjust the

steps per revolution in the code, to match your model.

https://amzn.to/301s0WR
https://www.makerguides.com/wp-content/uploads/2019/04/28byj48-Stepper-Motor-Datasheet.pdf
http://forum.arduino.cc/index.php?topic=71964.15

4/16

The Adafruit Industries Small Reduction Stepper Motor uses the same form factor as the

28BYJ-48, but does have a different gear ratio. It has a roughly 1/16 reduction gear set,

which results in 513 steps per revolution (in full-step mode). You can download the

datasheet for it here.

For more information about the driver you can check out the datasheet below.

ULN2003 Datasheet

ULN2003 Driver PCB

Wiring – Connecting 28BYJ-48 stepper motor and ULN2003 driver
board to Arduino UNO

The wiring diagram/schematic below shows you how to connect the ULN2003 driver

board to the 28BYJ-48 stepper motor and the Arduino. The connections are also given in

the table below.

Wiring diagram for ULN2003 driver with 28BYJ-48 stepper motor and Arduino.

I used a breadboard and some jumper wires to connect the driver board to an external

power supply.

ULN2003 and 28BYJ-48 to Arduino Connections

https://amzn.to/2LGNSSC
https://www.makerguides.com/wp-content/uploads/2019/04/Adafruit-Industries-Small-Reduction-Stepper-Motor-Datasheet.pdf
https://www.makerguides.com/wp-content/uploads/2019/04/ULN2003-Datasheet.pdf
https://www.makerguides.com/wp-content/uploads/2019/04/ULN2003-Stepper-Motor-Driver-PCB.pdf

5/16

ULN2003 Driver Board Connection

IN1 Pin 8 Arduino

IN2 Pin 9 Arduino

IN3 Pin 10 Arduino

IN4 Pin 11 Arduino

– Logic GND Arduino

– GND power supply

+ 5 V power supply

Please note: It is possible to directly power the stepper motor from the 5 V output of the

Arduino. This however, is not recommended. When the stepper motor draws too much

current you can damage the Arduino. I also found that when powering the Arduino

with USB power only, I would get inconsistent behavior and bad performance of the

stepper motor.

I recommend to power the driver board/stepper motor with an external 5 V power supply,

like this one. It should come with a female DC connector, so you can easily connect it to

some (jumper) wires. Note that you also need to connect the GND of the Arduino to the –

pin on the ULN2003 driver board.

After uploading the code you also need to power the Arduino, either with a USB

type-B cable or via the 5.5 mm power jack.

The jumper next to power connections on the driver board can be used to disconnect

power to the stepper motor.

Basic Arduino example code to control a 28BYJ-48 stepper motor

You can upload the following example code to your Arduino using the Arduino IDE.

This example uses the Stepper.h library, which should come pre-installed with the

Arduino IDE. This sketch turns the stepper motor 1 revolution in one direction, pauses,

and then turns 1 revolution in the other direction.

/* Example sketch to control a 28BYJ-48 stepper motor with ULN2003 driver board and

Arduino UNO. More info: https://www.makerguides.com */

// Include the Arduino Stepper.h library:

#include <Stepper.h>

// Define number of steps per rotation:

const int stepsPerRevolution = 2048;

// Wiring:

// Pin 8 to IN1 on the ULN2003 driver

https://amzn.to/31fTvOd
https://www.arduino.cc/en/main/software

6/16

// Pin 9 to IN2 on the ULN2003 driver

// Pin 10 to IN3 on the ULN2003 driver

// Pin 11 to IN4 on the ULN2003 driver

// Create stepper object called 'myStepper', note the pin order:

Stepper myStepper = Stepper(stepsPerRevolution, 8, 10, 9, 11);

void setup() {

// Set the speed to 5 rpm:

myStepper.setSpeed(5);

// Begin Serial communication at a baud rate of 9600:

Serial.begin(9600);

}

void loop() {

// Step one revolution in one direction:

Serial.println("clockwise");

myStepper.step(stepsPerRevolution);

delay(500);

// Step one revolution in the other direction:

Serial.println("counterclockwise");

myStepper.step(-stepsPerRevolution);

delay(500);

}

Code explanation:

The sketch starts by including the Stepper.h Arduino library. More information about this

library can be found on the Arduino website.

// Include the Arduino Stepper.h library:

#include <Stepper.h>

Next, I defined how many steps the motor takes to rotate 1 revolution. In this example we

will be using the motor in full-step mode. This means it takes 2048 steps to rotate 360

degrees (see motor specifications above).

// Define number of steps per rotation:

const int stepsPerRevolution = 2048;

Next, you need to create a new instance of the Stepper class, which represents a particular

stepper motor connected to the Arduino. For this we use the function Stepper(steps,

pin1, pin2, pin3, pin4) where steps is the number of steps per revolution and pin1

through pin4 are the pins to which the motor is connected. To get the correct step

sequence, we need to set the pins in the following order: 8, 10, 9, 11.

// Create stepper object called 'myStepper', note the pin order:

Stepper myStepper = Stepper(stepsPerRevolution, 8, 10, 9, 11);

In this case I called the stepper motor ‘myStepper’ but you can use other names as well,

like ‘z_motor’ or ‘liftmotor’ etc. Stepper liftmotor =

Stepper(stepsPerRevolution, 8, 10, 9, 11); . You can create multiple stepper

https://www.arduino.cc/en/Reference/Stepper

7/16

motor objects with different names and pins. This allows you to easily control 2 or more

stepper motors at the same time.

In the setup, you can set the speed in rpm with the function setSpeed(rpm) .

The maximum speed for a 28byj-48 stepper motor is roughly 10-15 rpm at 5 V.

void setup() {

// Set the speed to 5 rpm:

myStepper.setSpeed(5);

// Begin Serial communication at a baud rate of 9600:

Serial.begin(9600);

}

In the loop section of code, we simply call the step(steps) function which turns the

motor a specific number of steps at a speed determined by the setSpeed(rpm) function.

Passing a negative number to this function reverses the spinning direction of the motor.

void loop() {

// Step one revolution in one direction:

Serial.println("clockwise");

myStepper.step(stepsPerRevolution);

delay(500);

// Step one revolution in the other direction:

Serial.println("counterclockwise");

myStepper.step(-stepsPerRevolution);

delay(500);

}

Example codes for 28BYJ-48 stepper motor with Arduino and
AccelStepper library

In the following three examples I will show you how you can control both the speed, the

direction and the number of steps the stepper motor should take. In these examples I will

be using the AccelStepper library.

The AccelStepper library written by Mike McCauley is an awesome library to use for your

project. One of the advantages is that it supports acceleration and deceleration, but it has

a lot of other nice functions too.

You can download the latest version of this library here or click the button below.

AccelStepper-1.59.zip

You can install the library by going to Sketch > Include Library > Add .ZIP

Library… in the Arduino IDE.

https://www.airspayce.com/mikem/arduino/AccelStepper/files.html
https://www.makerguides.com/wp-content/uploads/2019/02/AccelStepper-1.59.zip

8/16

Another option is to navigate to Tools > Manage Libraries… or type Ctrl + Shift + I on

Windows. The Library Manager will open and update the list of installed libraries.

You can search for ‘accelstepper‘ and look for the library by Mike McCauley. Select the

latest version and then click Install.

1. Continuous rotation example code

9/16

The following sketch can be used to run one or more stepper motors continuously at a

constant speed. (No acceleration or deceleration is used).

You can copy the code by clicking on the button in the top right corner of the code field.

/* Example sketch to control a 28BYJ-48 stepper motor with ULN2003 driver board,

AccelStepper and Arduino UNO: continuous rotation. More info:

https://www.makerguides.com */

// Include the AccelStepper library:

#include <AccelStepper.h>

// Motor pin definitions:

#define motorPin1 8 // IN1 on the ULN2003 driver

#define motorPin2 9 // IN2 on the ULN2003 driver

#define motorPin3 10 // IN3 on the ULN2003 driver

#define motorPin4 11 // IN4 on the ULN2003 driver

// Define the AccelStepper interface type; 4 wire motor in half step mode:

#define MotorInterfaceType 8

// Initialize with pin sequence IN1-IN3-IN2-IN4 for using the AccelStepper library with

28BYJ-48 stepper motor:

AccelStepper stepper = AccelStepper(MotorInterfaceType, motorPin1, motorPin3,

motorPin2, motorPin4);

void setup() {

// Set the maximum steps per second:

stepper.setMaxSpeed(1000);

}

void loop() {

// Set the speed of the motor in steps per second:

stepper.setSpeed(500);

// Step the motor with constant speed as set by setSpeed():

stepper.runSpeed();

}

How the code works:

Again the first step is to include the library with #include <AccelStepper.h> .

// Include the AccelStepper library:

#include <AccelStepper.h>

The next step is to define the ULN2003 to Arduino connections.

The statement #define is used to give a name to a constant value. The compiler will

replace any references to this constant with the defined value when the program is

compiled. So everywhere you mention motorPin1 , the compiler will replace it with the

value 8 when the program is compiled.

// Motor pin definitions:

#define motorPin1 8 // IN1 on the ULN2003 driver

10/16

#define motorPin2 9 // IN2 on the ULN2003 driver

#define motorPin3 10 // IN3 on the ULN2003 driver

#define motorPin4 11 // IN4 on the ULN2003 driver

The next step is to specify the motor interface type for the AccelStepper library. In this

case we will be driving a 4 wire stepper motor in half step mode, so we set the interface

type to ‘8’. You can find the other interface types here. If you want to run the motor in

full-step mode (fewer steps per revolution), just change the 8 to 4.

// Define the AccelStepper interface type; 4 wire motor in half step mode:

#define MotorInterfaceType 8

Next, you need to create a new instance of the AccelStepper class with the appropriate

motor interface type and connections. To get the correct step sequence, we need to set the

pins in the following order: motorPin1, motorPin3, motorPin2, motorPin4.

In this case I called the stepper motor ‘stepper’ but you can use other names as well, like

‘z_motor’ or ‘liftmotor’ etc. AccelStepper liftmotor =
AccelStepper(MotorInterfaceType, motorPin1, motorPin3, motorPin2,

motorPin4); . You can create multiple stepper motor objects with different names and

pins. This allows you to easily control 2 or more stepper motors at the same time.

// Initialize with pin sequence IN1-IN3-IN2-IN4 for using the AccelStepper library with

28BYJ-48 stepper motor:

AccelStepper stepper = AccelStepper(MotorInterfaceType, motorPin1, motorPin3,

motorPin2, motorPin4);

In the setup section of the code, we define the maximum speed in steps/second with the

function setMaxSpeed() . Speeds of more than 1000 steps per second can be unreliable,

so I set this as the maximum. Note that I specify the name of the stepper motor

(‘stepper’), for which I want to define the maximum speed. If you have multiple stepper

motors connected, you can specify a different speed for each

motor: stepper2.setMaxSpeed(500); .

void setup() {

// Set the maximum steps per second:

stepper.setMaxSpeed(1000);

}

In the loop, we first set the speed that we want the motor to run at with the

function setSpeed() . (you can also place this in the setup section of the code).

stepper.runSpeed() polls the motor and when a step is due it executes 1 step. This

depends on the set speed and the time since the last step. If you want to change the

direction of the motor, you can set a negative speed: stepper.setSpeed(-400); turns

the motor the other way.

void loop() {

// Set the speed of the motor in steps per second:

stepper.setSpeed(500);

// Step the motor with constant speed as set by setSpeed():

https://www.airspayce.com/mikem/arduino/AccelStepper/classAccelStepper.html#a73bdecf1273d98d8c5fbcb764cabeea5

11/16

stepper.runSpeed();

}

In half step mode, one revolution takes 4096 steps, so 500 steps/sec results in roughly 7

rpm.

2. Sketch to control number of steps or revolutions

With the following sketch you can control both the speed, direction and the number of

steps/revolutions.

In this case, the stepper motor turns 1 revolution clockwise with 500 steps/sec, then turns

1 revolution counterclockwise at 1000 steps/sec, and lastly turns 2 revolutions clockwise

at 1000 steps/sec.

/* Example sketch to control a 28BYJ-48 stepper motor with ULN2003 driver board,

AccelStepper and Arduino UNO: number of steps/revolutions. More info:

https://www.makerguides.com */

// Include the AccelStepper library:

#include <AccelStepper.h>

// Motor pin definitions:

#define motorPin1 8 // IN1 on the ULN2003 driver

#define motorPin2 9 // IN2 on the ULN2003 driver

#define motorPin3 10 // IN3 on the ULN2003 driver

#define motorPin4 11 // IN4 on the ULN2003 driver

// Define the AccelStepper interface type; 4 wire motor in half step mode:

#define MotorInterfaceType 8

// Initialize with pin sequence IN1-IN3-IN2-IN4 for using the AccelStepper library with

28BYJ-48 stepper motor:

AccelStepper stepper = AccelStepper(MotorInterfaceType, motorPin1, motorPin3,

motorPin2, motorPin4);

void setup() {

// Set the maximum steps per second:

stepper.setMaxSpeed(1000);

}

void loop() {

// Set the current position to 0:

stepper.setCurrentPosition(0);

// Run the motor forward at 500 steps/second until the motor reaches 4096 steps (1

revolution):

while (stepper.currentPosition() != 4096) {

stepper.setSpeed(500);

stepper.runSpeed();

}

delay(1000);

// Reset the position to 0:

stepper.setCurrentPosition(0);

12/16

// Run the motor backwards at 1000 steps/second until the motor reaches -4096 steps (1

revolution):

while (stepper.currentPosition() != -4096) {

stepper.setSpeed(-1000);

stepper.runSpeed();

}

delay(1000);

// Reset the position to 0:

stepper.setCurrentPosition(0);

// Run the motor forward at 1000 steps/second until the motor reaches 8192 steps (2

revolutions):

while (stepper.currentPosition() != 8192) {

stepper.setSpeed(1000);

stepper.runSpeed();

}

delay(3000);

}

Code explanation:

The first part of the code up to the loop() section is exactly the same as in the previous

example.

In the loop I make use of a while loop in combination with

the currentPosition() function. First, I set the current position of the stepper motor

to zero with stepper.setCurrentPosition(0) .

// Set the current position to 0:

stepper.setCurrentPosition(0);

Next, we make use of the while loop. A while loop will loop continuously, and infinitely,

until the expression inside the parenthesis, () becomes false. So in this case I check if the

current position of the stepper motor is not equal to 4096 steps (!= means: is not equal

to). While this is not the case, we run the stepper motor at a constant speed as set

by setSpeed() .

// Run the motor forward at 500 steps/second until the motor reaches 4096 steps (1

revolution):

while (stepper.currentPosition() != 4096) {

stepper.setSpeed(500);

stepper.runSpeed();

}

In the rest of the loop, we do exactly the same, just with a different speed and target

position.

3. Acceleration and deceleration example code

https://www.arduino.cc/reference/en/language/structure/control-structure/while/

13/16

With the following sketch you can add acceleration and deceleration to the movements of

the stepper motor, without any complicated coding. The first section of this sketch is the

same as in example 1, but the setup and the loop are different.

The motor will run two revolutions back and forth with a speed of 1000 steps per second

and an acceleration of 200 steps/second2.

/* Example sketch to control a 28BYJ-48 stepper motor with ULN2003 driver board,

AccelStepper and Arduino UNO: acceleration and deceleration. More info:

https://www.makerguides.com */

// Include the AccelStepper library:

#include <AccelStepper.h>

// Motor pin definitions:

#define motorPin1 8 // IN1 on the ULN2003 driver

#define motorPin2 9 // IN2 on the ULN2003 driver

#define motorPin3 10 // IN3 on the ULN2003 driver

#define motorPin4 11 // IN4 on the ULN2003 driver

// Define the AccelStepper interface type; 4 wire motor in half step mode:

#define MotorInterfaceType 8

// Initialize with pin sequence IN1-IN3-IN2-IN4 for using the AccelStepper library with

28BYJ-48 stepper motor:

AccelStepper stepper = AccelStepper(MotorInterfaceType, motorPin1, motorPin3,

motorPin2, motorPin4);

void setup() {

// Set the maximum steps per second:

stepper.setMaxSpeed(1000);

// Set the maximum acceleration in steps per second^2:

stepper.setAcceleration(200);

}

void loop() {

// Set target position:

stepper.moveTo(8192);

// Run to position with set speed and acceleration:

stepper.runToPosition();

delay(1000);

// Move back to original position:

stepper.moveTo(0);

// Run to position with set speed and acceleration:

stepper.runToPosition();

delay(1000);

}

How the code works:

In the setup, besides the maximum speed, we also need to define the

acceleration/deceleration. For this, we use the function setAcceleration() .

14/16

void setup() {

// Set the maximum steps per second:

stepper.setMaxSpeed(1000);

// Set the maximum acceleration in steps per second^2:

stepper.setAcceleration(200);

}

In the loop section of the code, I used a different way to let the motor rotate a predefined

number of steps. First I set the target position with the function moveTo() . Next, we

simply use the function runToPosition() to let the motor run to the target position

with the set speed and acceleration. The motor will decelerate before reaching the target

position.

void loop() {

// Set target position:

stepper.moveTo(8192);

// Run to position with set speed and acceleration:

stepper.runToPosition();

delay(1000);

// Move back to original position:

stepper.moveTo(0);

// Run to position with set speed and acceleration:

stepper.runToPosition();

delay(1000);

}

Finally, we set the new target position back to the 0, so that we return to the origin.

Conclusion

In this article I have shown you how you can control a 28BYJ-48 stepper motor with a

ULN2003 driver and Arduino. We have looked at 4 examples, using both the Stepper and

AccelStepper libraries. I hope you found it useful and informative. If you did,

please share it with a friend that also likes electronics!

I would love to know what projects you plan on building (or have already built) with this

stepper motor.If you have any questions, suggestions, or if you think that things are

missing in this tutorial, please leave a comment down below.

Note that comments are held for moderation to prevent spam.

Beginner

15/16

The complete guide for DS18B20 digital temperature sensors with Arduino

LM35 analog temperature sensor with Arduino tutorial

https://www.makerguides.com/ds18b20-arduino-tutorial/
https://www.makerguides.com/ds18b20-arduino-tutorial/
https://www.makerguides.com/lm35-arduino-tutorial/
https://www.makerguides.com/lm35-arduino-tutorial/

16/16

MaxBotix MB1240 ultrasonic distance sensor Arduino tutorial

https://www.makerguides.com/maxbotix-mb1240-arduino-tutorial/
https://www.makerguides.com/maxbotix-mb1240-arduino-tutorial/

